

STScI NGST Libration Point Introduction

Michael Mesarch
NASA/GSFC
Guidance Navigation and Control Center

March 31, 1999

History, Definitions, & Modeling

History

Euler

- ➤ Defined three body problem in work on ➤ Stability of motion and use of potential lunar motion
- > Proved existence of co-linear points

Lagrange

> Development of equilibrium points

Poincare

- functions
- First to recognize the need for a qualitative approach to three body problem which is unsolvable in closed form

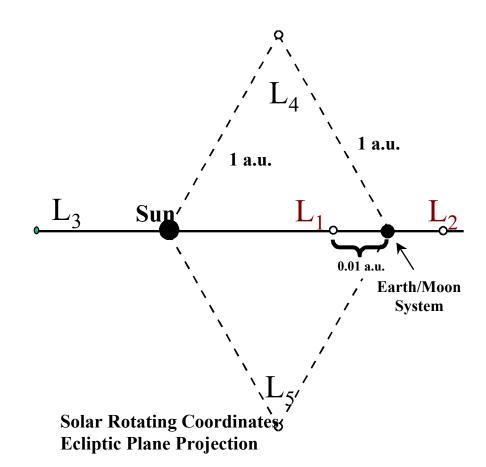
Jacobi

> One exact integral of three body system

Definitions & Modeling

- Easiest to model the system as the Circular Restricted Three Body Problem (CRTBP) where $m_1 >> m_2 >> m_3$
 - $^{\buildrel \buildrel \b$
 - motion of Earth about Sun is circular
 - $\$ motion of m_3 is in plane of m_1 & m_2
- > CRTBP can be solved exactly
- > Unfortunately, unmodeled forces (solar radiation pressure, other gravitational bodies - Jupiter, etc.) and physical reality (non-circular motion or EM system about sun) cause perturbations

The Libration Points

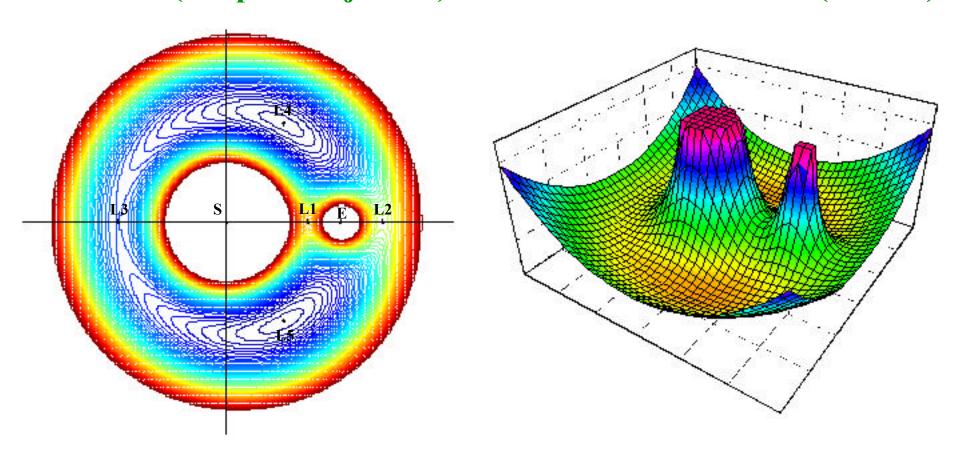


What Are They??

- Equilibrium or libration points represent singularities in the equations of motion where velocity and acceleration components are zero and the forces are balanced
- ➤ Viewed in the rotating frame: centrifugal (Coriolis-Type) force balances with gravitational forces of the two primaries
- ➤ Libration points are in plane with no Z component
- ➤ Our system of interest involves the Sun (m₁), the Earth-Moon system (m₂) and the spacecraft m₃

Where Are They?

- \triangleright Collinear Points: L₁, L₂, L₃ (unstable)
- \triangleright Triangular Points: L₄, L₅ (stable)



Potential for Planar CRTBP

$$V^2 = x^2 + y^2 + [2(1-\mu)/r_1] + [2\mu/r_2] - C$$

2-D View (Ecliptic Projection) 3-D View of Potential (fixed C)

Motion About the Libration Points

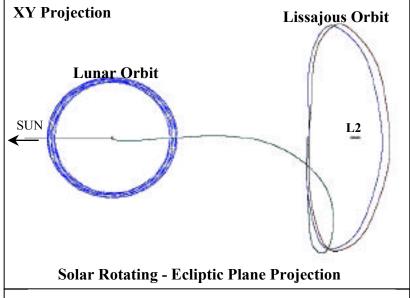
Periodic solutions can be found for motion about the collinear libration points in the CRTBP

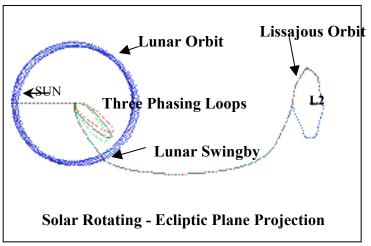
- Period of motion about libration points is 180 days
- There are two types of motion about libration points
 - \$\times\$ Lissajous orbits

- As a result, the orbit oscillates about the y-axis such that the projection along the sun-line seems to open and close
- Because of this motion, constraints on a solar exclusion zone or eclipse region may be required
- Halo orbits
 - \sim Special solution of the libration point orbit where $_{\rm XY} = _{\rm Z}$ and $A_{\rm Y} > 655,000$ km

Lissajous Patterns (MAP)

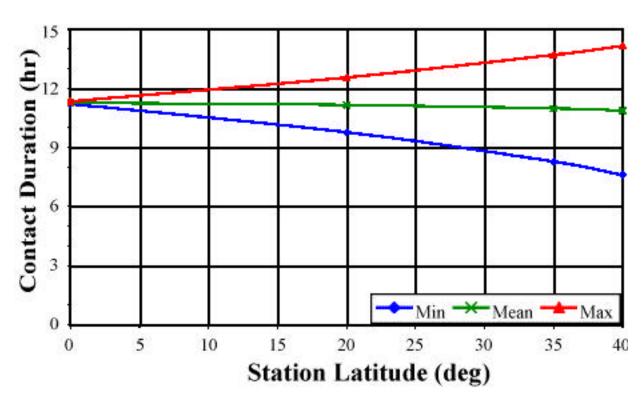
14 Year Evolution


6 Year Evolution


Getting to L2

Direct Injection

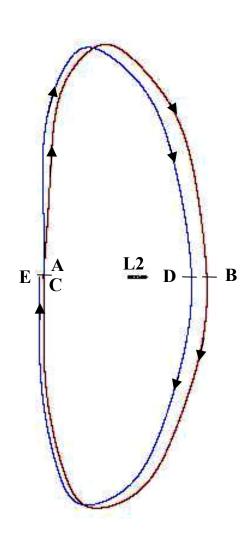
Lunar Swingby



Contacting NGST

- Fortunately, ground contact time to NGST is abundant out at L2
- Coverage ranges from 8 to 14 hours a day depending on the station latitude (assuming a 5° minimum elevation at the station)
- ➤ Ranges to NGST are

 Minimum: 1.22 x 10⁶ km
 - ♦ Average: 1.53 x 10⁶ km
 - **♦** Maximum:1.73 x 10⁶ km
- For reference, DSN latitudes at Goldstone, Canberra, and Madrid are 35°, -35°, & 40°, respectively



Stationkeeping at L2

- Because of the instabilities of the Lagrangian points, stationkeeping is required to maintain an orbit about L2 for an extended period of time
- At it's simplest, a stationkeeping maneuver is performed at an XZ-plane crossing to provide for a complete revolution about L2 (motion at right is from A B C D E)
- > For example:
 - s a maneuver is performed at point A to ensure a one period revolution to point C
 - then a maneuver is performed at point B to ensure a one period revolution to point D
 - betc.
- Typical stationkeeping costs are anywhere from 2 4 m/s per year (depending on the requirements)

NGST Wrinkles to Stationkeeping

- ➤ The large sun-shade on NGST (200 m²?) provides a continuous perturbation acceleration in the +X direction (away from the Sun) due to solar radiation pressure
- Furthermore, it's now being studied how frequently maneuvers will be needed for momentum unloading
 - these maneuvers will always be in the +X direction (no thrusters allowed on anti-Sun side of shade)
- As a result inventive methods may be needed to assist with stationkeeping and momentum management
 - salternate NGST viewing to minimize momentum buildup
 - use solar shade as 'sail' to supplement stationkeeping options
 - \$\\$\\$\ design gimballed solar shade to enable solar 'sailing'

References

- * Farquhar, R. W., "The Control and Use of Libration-Point Satellites", NASA Technical Report, NASA TR R-346, September 1970
- * Roy, A. E., Orbital Motion, Adam Hilger Ltd., Bristol, 1982
- * Szebehely, V., <u>Theory of Orbits: The Restricted Problem of Three Bodies</u>, Academic Press, New York, 1967